f08 — Least-squares and FEigenvalue Problems (LAPACK) f08qhc

NAG C Library Function Document
nag_dtrsyl (f08qhc)

1 Purpose

nag_dtrsyl (f08qhc) solves the real quasi-triangular Sylvester matrix equation.

2 Specification

void nag_dtrsyl (Nag_OrderType order, Nag_TransType trana, Nag_TransType tranb,
Nag_SignType sign, Integer m, Integer n, const double a[], Integer pda,
const double b[], Integer pdb, double c[], Integer pdc, double *scale,
NagError xfail)

3 Description
nag_dtrsyl (f08ghc) solves the real Sylvester matrix equation
op(A)X £+ Xop(B) = aC,

where op(A4) = A or A" and the matrices A and B are upper quasi-triangular matrices in canonical Schur
form (as returned by nag_dhseqr (f08pec)); « is a scale factor (< 1) determined by the function to avoid
overflow in X; A is m by m and B is n by n while the right-hand side matrix C' and the solution matrix
X are both m by n. The matrix X is obtained by a straightforward process of back substitution (see
Golub and Van Loan (1996)).

Note that the equation has a unique solution if and only if o; & 3; # 0, where {c;} and {f;} are the
eigenvalues of A and B respectively and the sign (4 or —) is the same as that used in the equation to be
solved.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

Higham N J (1992) Perturbation theory and backward error for AX — XB = C Numerical Analysis Report
University of Manchester

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: trana — Nag TransType Input
On entry: specifies the option op(A) as follows:
if trana = Nag NoTrans, then op(A) = A;
if trana = Nag_Trans or Nag_ConjTrans, then op(A4) = A”.

Constraint: trana = Nag NoTrans, Nag Trans or Nag_ConjTrans.

[NP3645/7] f08qhc.1

f08qhc NAG C Library Manual

3: tranb — Nag TransType Input
On entry: specifies the option op(B) as follows:
if tranb = Nag NoTrans, then op(B) = B;

if tranb = Nag_Trans or Nag_ConjTrans, then op(B) = B”.

Constraint: tranb = Nag_NoTrans, Nag_Trans or Nag_ConjTrans.

4: sign — Nag_SignType Input
On entry: indicates the form of the Sylvester equation as follows:
if sign = Nag_Plus, then the equation is of the form op(A)X + Xop(B) = aC;
if sign = Nag_Minus, then the equation is of the form op(A)X — Xop(B) = aC.

Constraint: sign = Nag_Plus or Nag_Minus.

5: m — Integer Input
On entry: m, the order of the matrix A, and the number of rows in the matrices X and C.

Constraint: m > 0.

6: n — Integer Input
On entry: n, the order of the matrix B, and the number of columns in the matrices X and C.

Constraint: n > 0.

7: a[dim| — const double Input
Note: the dimension, dim, of the array a must be at least max(1, pda x m).

If order = Nag_ColMajor, the (4, j)th element of the matrix A is stored in a[(j — 1) x pda + 4 — 1] and
if order = Nag_RowMajor, the (i,j)th element of the matrix A is stored in a[(i — 1) x pda + j — 1].

On entry: the m by m upper quasi-triangular matrix A in canonical Schur form, as returned by
nag_dhseqr (f08pec).
8: pda — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.

Constraint: pda > max(1, m).

9: b[dim| — const double Input
Note: the dimension, dim, of the array b must be at least max(1, pdb x n).

If order = Nag_ColMajor, the (i, j)th element of the matrix B is stored in b[(j — 1) x pdb + ¢ — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix B is stored in b[(¢ — 1) x pdb + j — 1].

On entry: the n by n upper quasi-triangular matrix B in canonical Schur form, as returned by
nag_dhseqr (f08pec).
10: pdb — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array b.

Constraint: pdb > max(1,n).

11: c¢[dim] — double Input/Output

Note: the dimension, dim, of the array ¢ must be at least max(l,pdec x n) when
order = Nag_ColMajor and at least max(1, pde x m) when order = Nag_RowMajor.

f08qhc.2 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08qhc

13:

14:

6

If order = Nag_ColMajor, the (4, j)th element of the matrix C' is stored in ¢[(j — 1) x pde + ¢ — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix C' is stored in ¢[(i — 1) x pdc + j — 1].

On entry: the m by n right-hand side matrix C.

On exit: ¢ is overwritten by the solution matrix X.

pdc — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array c.

Constraints:
if order = Nag_ColMajor, pdc > max(1, m);
if order = Nag_RowMajor, pdc > max(1,n).
scale — double * Output

On exit: the value of the scale factor o

fail — NagError * Output

The NAG error parameter (see the Essential Introduction).

Error Indicators and Warnings

NE_INT

On entry, m = (value).
Constraint: m > 0.

On entry, n = (value).
Constraint: n > 0.

On entry, pda = (value).
Constraint: pda > 0.

On entry, pdb = (value).
Constraint: pdb > 0.

On entry, pde = (value).
Constraint: pde > 0.

NE_INT 2

On entry, pda = (value), m = (value).
Constraint: pda > max(1, m).

On entry, pdb = (value), n = (value).
Constraint: pdb > max(1,n).

On entry, pde = (value), m = (value).
Constraint: pde > max(1, m).

On entry, pde = (value), n = (value).
Constraint: pde > max(1,n).

NE_PERTURBED

A and B have common or close eigenvalues, perturbed values of which were used to solve the
equation.

NE_ALLOC_FAIL

Memory allocation failed.

[NP3645/7] f08qhc.3

f08qhc NAG C Library Manual

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

Consider the equation AX — XB = C. (To apply the remarks to the equation AX + XB = C, simply
replace B by —B.)

Let X be the computed solution and R the residual matrix:
R=C - (AX — XB).
Then the residual is always small:
IRl = Oe) (I Allp + 1Bl)| Xl p-

However, X is not necessarily the exact solution of a slightly perturbed equation; in other words, the
solution is not backwards stable.

For the forward error, the following bound holds:

122l

X —X||, < ———E
H ||F_S€p(A,B)

but this may be a considerable overestimate. See Golub and Van Loan (1996) for a definition of
sep(A, B), and Higham (1992) for further details.

These remarks also apply to the solution of a general Sylvester equation, as described in Section 8.

8 Further Comments
The total number of floating-point operations is approximately mn(m + n).
To solve the general real Sylvester equation

AX+XB=C

where A and B are general nonsymmetric matrices, A and B must first be reduced to Schur form :
A=QAQ] and B=Q,BQ;

where A and B are upper quasi-triangular and @, and @, are orthogonal. The original equation may then
be transformed to:

AX+XB=C
where X = QT X, and C= QT CcQ,. C may be computed by matrix multiplication; nag_dtrsyl (f08qhc)
may be used to solve the transformed equation; and the solution to the original equation can be obtained as

X =QXQ;.
The complex analogue of this function is nag_ztrsyl (f08qvc).

9 Example
To solve the Sylvester equation AX + XB = C, where
0.10 0.50 0.68 —0.21 -099 —-0.17 039 0.58
A —0.50 0.10 —-0.24 0.67 B 0.00 048 —-0.84 -0.15
- 0.00 0.00 0.19 —-035 |’ - 0.00 0.00 0.75 0.25
0.00 0.00 0.00 —0.72 0.00 0.00 —0.25 0.75

f08qhc.4 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08qhc

and

0.63 —-056 0.08 -0.23
—-0.45 -0.31 0.27 1.21
0.20 -0.35 0.41 0.84
0.49 —-0.05 —-0.52 —-0.08

9.1 Program Text

/* nag_dtrsyl (£08ghc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{
/* Scalars *x/
Integer i, j, m, n, pda, pdb, pdc;
Integer exit_status=0;
double scale;
NagError fail;
Nag_OrderType order;
/* Arrays */
double *a=0, *b=0, *c=0;

#ifdef NAG_COLUMN_MAJOR
#define A(I,J) al[(J-1)*pda + I - 1]
#define B(I,J) b[(J-1)*pdb
#define C(I,J) c[(J-1)*pdc + I -

+
H

|
e

order Nag_ColMajor;
#else
#define A(I,J) al(I-1)*pda + J - 1]
#define B(I,J) b[(I-1)*pdb + J - 1]
J - 1]

#define C(I,J) c[(I-1)=*pdc +
order = Nag_RowMajor;
#endif

INIT FAIL(fail);
Vprintf ("£08ghc Example Program Results\n\n");

/* Skip heading in data file #*/

Vscanf ("s*x["\n] ");

Vscanf ("%$1d%1d%*["\n] ", &m, &n);
#ifdef NAG_COLUMN_MAJOR

pda = m;

pdb = n;

pdc = m;
#else

pda = m;

pdb = n;

pdc = n;
#endif

/* Allocate memory */
if (!(a = NAG_ALLOC(m * m, double))
! (b = NAG_ALLOC(n * m, double))

[
[
! (c = NAG_ALLOC(m * n, double)))

{
Vprintf ("Allocation failure\n")
exit_status = -1;
goto END;

[NP3645/7] 08qhe.5

f08qhc

}

/* Read A, B and C from data file */

for (i = 1; 1 <= m; ++1)
{

for (3 = 1; j <= m; ++3j)
Vscanf ("$1f", &A(i,3));

for (j = 1; j <= n; ++j

Vscanf ("$1f", &B(i,3));

}
Vscanf ("%*
for (i = 1;

{

for (j = 1; j <= n; ++j

Vscanf ("s1f", &C(i,3));

}
Vscanf ("%*["\n] ");

/* Reorder the Schur factorization T =*/

f08ghc(order, Nag_NoTrans, Nag _NoTrans, Nag Plus, m, n, a, pda,
b, pdb, c, pdc, &scale,

Vprintf ("Error from £08ghc.\n%s\n", fail.message) ;

if (fail.code != NE_NOERROR)
{
exit_status = 1;
goto END;

¥

&fail) ;

/* Print the solution matrix X stored in C *x/

x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, m, n,

c, pdc, "Solution matrix X",

0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04cac.\n%s\n",
exit_status = 1;
goto END;

}

Vprintf ("\n SCALE = %10.2e\n",

END:
if (a) NAG_FREE (a);
if (b) NAG_FREE (b);
if (c) NAG_FREE (c);

return exit_status;

9.2 Program Data

f08ghc Example Program Data
4 4

0.10 0.50 0.68 -0.21
-0.50 0.10 -0.24 0.67
0.00 0.00 0.19 -0.35
0.00 0.00 0.00 -0.72
-0.99 -0.17 0.39 0.58
0.00 0.48 -0.84 -0.15
0.00 0.00 0.75 0.25
0.00 0.00 -0.25 0.75
0.63 -0.56 0.08 -0.23
-0.45 -0.31 0.27 1.21
0.20 -0.35 0.41 0.84
0.49 -0.05 -0.52 -0.08

J08qhc.6

:Values

:End of

:End of

:End of

scale) ;

of M and N

matrix A

matrix B

matrix C

fail.message) ;

NAG C Library Manual

[NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08qhc

9.3 Program Results

f08ghc Example Program Results

Solution matrix X
1 2 3 4

1 -0.4209 0.1764 0.2438 -0.9577
2 0.5600 -0.8337 -0.7221 0.5386
3 -0.1246 -0.3392 0.6221 0.8691
4 -0.2865 0.4113 0.5535 0.3174
SCALE = 1.00e+00

[NP3645/7] 08qhe.7 (last)

	f08qhc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	trana
	tranb
	sign
	m
	n
	a
	pda
	b
	pdb
	c
	pdc
	scale
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_PERTURBED
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities

